AI芯片公司“各自为政”,不会出现一家独大
确实,现在大多数计算机视觉或者自然语言处理初创公司,更多的是从技术应用场景出发,围绕终端侧开发相应的芯片。毫不夸张的说,软硬件解决方案+前后端通吃正在成为大趋势。
地平线的创始人余凯在此前的采访中也表示,“芯片最终是拿来用的,并不是用来发论文的,所以要看在具体场景下把这个问题解决的怎么样。传统的芯片可能不用管后续的应用,所以他们只能做到他们的层次,多少瓦处理多少计算力,并没有去考虑计算力对应用的意义,这个是传统的芯片问题。”
AI芯片“回归初心”的话,其本质上是为具体的应用场景而服务的。云知声loT事业部副总裁李霄寒认为,“技术实际上还在其次,最关键要看你解决问题的具体场景,要从具体的场景出发,去推演芯片能不能解决实际的问题。”
从镁客网接触到的一些AI企业来看,现阶段AI芯片的应用也主要以金融、安防、物联网、自动驾驶等几个细分的场景为主。
“目前国内做AI芯片的公司可能有几十家,重合度不会低。但多数公司有自己的侧重点,例如寒武纪主推自己的AI专用处理器,地平线机器人在自动驾驶方面发展较多,商汤在智能监控方面积累较好。”
王中风教授表示,“最终市场必然会淘汰其中大部分的公司,有些公司会互相合并,也有些公司被大公司收购,能够自己独立发展并成功上市的也许不到十家。”
但是在那些重合度比较高的细分市场中,最终会不会出现一两家芯片厂商垄断呢?
对此,林福江教授认为,AI芯片发展到后期不会出现这样的局面,“AI芯片更多是概念产业,是把一些可以解决算法问题的东西引进到芯片中来,我不认为会有通用AI芯片,也不会有一两家大的芯片厂商来统一。”
AI芯片是阶段性的,指望它在一两年回本略显着急
一般情况下,芯片研发的周期都是按照年来计算,按照去年的发布时间,2018年下半年会有不少AI芯片陆续面世。
如此长的研发投入时间有可能无法和算法以及应用的发展同步,这种不确定性,也带来未知的风险。尤其是对于芯片这种烧钱的硬件,出了一点纰漏,损失的都是千万元以上。
换句话说,虽然国内芯片产业是巨大的,但是整个研发成本非常之高,成功率也很难有保证。
而且AI芯片仅仅强化深度学习能力是不够的,传感器接入,信号处理,检测识别,以及软件层面的决策和反馈等,各个环节需要的算法和计算特性也是不一样的。
云知声的李霄寒认为,做AI芯片有三个要素必须要考虑:
第一:有没有相应的芯片知识,会不会做芯片。
第二:有没有算法和应用,其实从核心的角度,我们是在为算法找一个适合的应用平台,如果我们做AI芯片的话,必须要有AI方面的算法,算法和硬件是绑定的。
第三:要有自己的业务模型,当芯片出来后,怎么去销售它,谁是你的客户,你准备把它做成一种什么样的产品形态,这些业务模型都是要考虑的。
从这个角度说,现在有一部分公司是有算法技术的,但如果仅仅从一个点出发去着手做芯片研发,摆在他们面前的则是后续的落地应用以及终端市场的开发。
李霄寒告诉镁客网,“虽然在做芯片这件事情上是盈利,但是指望第一款芯片出来就能回本就太激进了。”
“芯片没有那么好做,投入大产出低,现在这么多人做芯片,我觉得大多数都会被淘汰掉。”云从科技联合创始人孙庆凯表示。
AI芯片是一个需要长线投入的产业,它有自己的演进路线,基本上不可能在一两年时间内一蹴而就,开始赚钱。比如,当第一款芯片推出后,芯片厂商肯定要继续做相应的优化,包括添加功能 、降低成本等,而且它的生产测试也有自己的周期。
就像大多数初创公司认为的:AI芯片是一个长期的过程,指望它在一两年回本就有点着急了。
一位业内人士表示,“我没看清楚为什么大家都开始做芯片,不过芯片这个方向是好的,它是一个市场发展方向。但是也不像业界內传的这样神乎其神,泡沫有点大。在盈利方面,芯片本身就不容易,更何况AI芯片的还是在炒概念。”
确实,将芯片的性能、功耗和使用场景结合起来,做出一个非常好的产品,这实际上对每个企业都是巨大的挑战。
林福江教授则认为只有等基于旋转电子的量子计算机30年后成为普及,才会有真正的AI终端出现。
结语:
2018年是检验这些AI芯片厂商的开端,到底是哪些初创公司能做到小而美或者大而全,在优胜劣汰的过程中,芯片市场格局将发生大的变化,即使是像英伟达这样的公司,也随时面临着被新的黑马逆袭的危机。
而很多没有太多半导体背景的资本大量进入芯片领域,也释放出一个信号:山雨欲来风满楼,变天的时刻不远了。(作者:巫盼)