比特大陆第二代AI芯片BM1682测评:图像、视频处理专用,性能大幅提升

镁客网 中字

性能分析——BM1682极大提升

NPU深度学习硬件加速器是人工智能的核心。两者NPUs模块集成了64个NPUs单元,通过NPU Schedule Engine进行调度。BM1682中每个NPU含有32个EUs,BM1680未知。根据BM1680、BM1682数据手册显示,单片BM1680单精度运算速度为2TFLops;单片BM1682单精度运算速度为3TFLops。BM1682的单片运算速度高出BM1680 50%。

BM1680单片的运行速度低于BM1682,但BM1680支持级联工作模式,数个BM1680可以通过高速的Chip Link Subsystem组成一个集群式的系统,进行更高处理量的运算处理任务。BM1682不具备级联功能。下图为BM1680芯片的级联连接示意图。

图 | 级联方式:每个Node代表一个BM1680

电学方面,根据两者的数据手册显示:满载工作时BM1680的TPD(Thermal Design Power热设计功耗)为41W;:满载工作时BM1682的TPD小于50W。从功耗角度分析,BM1680的2TFlops的NPUs速度应该是有所保留的。

(数据来自比特大陆官网)

开发生态——两代芯片都很到位

BM1680、BM1682均支持的主流的CNN/RNN/DNN深度学习架构,通过这两款TPU芯片进行硬件加速,可以极大的提高深度学习算法的执行速度。当然,BM1680和BM1682也可以通过基础的矩阵运算进行深度学习的模型、架构的搭建。

在开发生态方面,两款芯片的支持也是很到位的。BM1680、BM1682均对后端用户提供SDK;如果用户需要进行深度优化以获取算法最优性能,可以联系厂家获得相关教学支持。

应用领域——BM1682更专注图像、视频处理

由前述分析可知,BM1680为通用性人工智能芯片,其应用方向没有偏向性,芯片内部主要集成了深度学习算法所需要的基本模块,应用各种人工智能的深度学习算法,通过添加相应的外围电路模块,BM1680可以搭建成适用于任一个领域的深度学习系统——像图片识别、自然语言处理、文本处理、金融、医学等等大小领域均可选择该芯片实现。BM1680更加具有灵活性。而且,BM1680可以进行级联,所以对于需要处理巨大数据量的人工智能深度学习系统,BM1680尤为合适。像企业级应用、海量数据处理等方面,通过简单的级联BM1680就可以获取相匹配的计算能力,灵活而强大。

而BM1682则是一个升级版的BM1680并配备了专门用于视频处理的集成系统,整个BM1682芯片搭载了视频处理所需要的全部核心模块,以及对其具体应用场景适应性的辅助模块。BM1682对于需要进行图像/视频处理的市场应用可谓是十分便捷了。BM1682的辅助功能配置模块自带有线与无线网络功能,对于视频监控方向的市场应用十分方便,无线功能更是省略了网线布线的繁琐施工,并且可用于实现远程监控。对于一些没有网络的场合,如科研领域的野外视频收集处理、闭路视频监控等,BM1682可以轻松的添加外置存储装置进行数据备份收集。BM1682作为图像/视频方向深度学习的SoC片上系统,市场前景很是广阔,这款新品还是很值得期待的。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存