当算法洞悉人类情绪,真正的恐惧已然来临

猎云网 中字

近几年来,来自于美国东北大学(Northeastern University)的Lisa Feldman Barrett教授对Ekman的经典理论提出了有力而且持续的评论。

Barrett教授第一次接触经典情绪理论是在读研期间,她需要找一个合适的方法来客观地测量情绪,因而就找到了Ekman教授的经典理论。当她仔细阅读相关文献时,她发现这个理论是有漏洞的。当时的实验中,人们做的是将给定的情绪和图片去进行匹配,而这一定程度上相当于无意地给了他们答案的提示。

她和她的一些同事们一起重新做了Ekman经典理论的验证实验,这次,他们不再提供标签,实验参与者可以自由地描述图片中的情绪。最终,实验得到了和以前不太一样的结果,面部表情和情绪的相关性大大降低。

从这以后,Barrett建立了自己的情绪理论,而且出版了一本书来详细阐明,书的名字叫做《情绪是如何产生的:大脑的秘密》(How Emotions Are Made: the Secret Life of the Brain)她认为,没有什么所谓的“通用情绪”,情绪存在于大脑之中,由内部刺激而激发,而且情绪是由更小的基础结构所构成的。

Barrett在书中写到:“情绪是身体的物理特性的体现。大脑会将自己和周围的各种环境相联系,包括文化、成长历程等等,从而产生出情绪。情绪是真实的,但是并不是一个具象的分子或者是神经元。这种真实就是像是我们手里握着钞票那样,情绪是我们身体的产物。”

Barrett认为将面部表情直接和情绪在各种文化环境中直接相关联,是不合适的。有的人在生气的时候可能会满脸怒容,另一个可能会礼貌的微笑,但背地里谋划着怎么对付自己的敌人。因此,进行情绪分析时,需要把情绪看做是动态的,而且涉及很多东西,包括:认知过程、人际交互、行为倾向以及文化背景等。Barrett说道:“情绪非常复杂,因此,分析情绪有很多需要做的事情。”

Kaliouby也同意表情是复杂的,这也是为什么她和她的团队一直在提升自己数据库的丰富程度和复杂程度。而且,他们使用视频来训练算法,而不再使用图片。他们也在试验中抓取相关信息,比如说声音、步态以及面部的细微变化。她坚信,更好的数据库将会提升分析结果的准确性。有些研究甚至声称,机器在识别工作上的表现已经超过了人类。

但是,Barrett认为,光有数据还不行,重要的是怎么去标记。Affectiva等公司的标记数据训练出来的算法,只能识别Barrett教授提到的“典型情绪”。

纽约大学AI Now研究中心的联合主任Meredith Whittake,基于Ekman的理论开发了一个使用机器学习技术的应用。结果,最后发现这个应用不仅不实用,而且可能会给社会造成一定的危害。

她说:“有的公司已经开始使用这些技术来评测应聘者是不是合适,甚至有的学校也用这些技术来判断学生的参与度和满意度。对于应聘者,这样的信息会改变一个人的应聘结果;对于学生,这样的信息会改变他所接受到的教学方法和评价方式。如果这个结果不是非常准确的话,那麻烦就大了。”

Kaliouby表示,她也知道情绪检测技术可能会被滥用,因此,在开发过程中,她非常注意技术伦理问题。

Kaliouby非常了解建立多元数据库的重要性,她说:“我们必须要保证用于训练算法的数据是多元化的。我们的样本包含白种人、亚洲人、深色人种,甚至还包括穆斯林女性。“

正是为了这个目的,Affectiva公司从87个国家收集数据。而在数据收集的过程中,工作人员发现,有的国家居民表情明显,有的则不然,在表达情绪的时候会有一些细微的差别。比如说,巴西人笑得时候嘴会咧得比较宽、比较长;而日本人的微笑并不表示开心,只是表示礼貌。

Affectiva公司为这些细微差别专门建立了一个分析系统,用于区分不同的种族和不同的文化。

但是,Whittaker对这样的技术有些担心。事实上,已经有一些公司提供预测技术,可以预测某个人多大程度上可能会是恐怖分子、恋童癖或者是预测一个人的性取向。

最近的一些研究表明,面部识别技术产生的偏见将更可能会损害少数民族的权利。去年11月公布的一项研究表明,相对白人,情绪检测技术对于黑人并不友好。

当这些问题汇总到Kaliouby那里以后,她说,Affectiva公司的系统中的确有所谓的“种族鉴定”功能,但是现在并未启用。而且,他们只会横向对比识别同一地区的情绪。例如,巴西人和巴西人去对比,日本人和日本人去对比。

“那如果是一个在巴西的日本人怎么办呢?系统会采用那个标准呢?“

“当前,我们的技术还未成熟。”

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存