NB-IoT、LoRa、eMTC、Zigbee、Sigfox、WiFi、蓝牙,谁能称霸物联网时代?

与非网 中字

WiFi

WiFi大家都比较熟悉,俗称无线宽带网,以更快,更大容量的通信而闻名,可以使用2.4 GHz和5 GHz频带在50 m范围内进行传输,是一种允许电子设备连接到一个无线局域网WLAN的技术。


WiFi通过IEEE 802.11标准系列提供易于使用的短距离无线连接和跨厂商互操作性。伴随着三大运营商大规模建设基于WiFi技术的无线城市,其物联网应用架构已然形成。由于在现有基础设施中普遍存在,其受欢迎程度不断提高。

WiFi是无线局域网(WLAN)的一个标准,最早的无线局域网可以追溯到上个世纪70年代,基于ALOHA协议的UHF无线网络连接了夏威夷岛,是现在无线局域网的一个最初版本。随后的1985年美国联邦通信委员会制定了现在广泛使用的免费WiFi频段,和微波炉频率相同。1991年NCR公司和AT&T公司发明了现在广泛使用WiFi的标准的802.11的前身,用在收银系统,名字为WaveLAN。澳大利亚的天文学家John O’sullivan和他的同事开发了WiFi技术的关键专利,起初使用在CSIRO (公共健康科学和工业研究组织)的项目上。1997年发布了基于802.11协议的第一个版本,提供2Mbit/s速率,在1999年提高到11Mbit/s,使用价值大大提高,随后WiFi得以快速发展。

WiFi定义了MAC层协议和安全性,但未定义设备的应用对象和通信方式,这意味着所有制造商都可以定义自己的应用层协议,因此难以形成统一的标准,这限制了WiFi在互联家居设备对设备市场的应用。

WiFi还设定了网络的中央接入点模型,即如果该接入点不工作,网络则会停止运行。相对于其他协议,WiFi的功耗较高,因此尽管适用于供电设备,但它在电池供电极为关键的应用中效果并不理想。

此外,WiFi还存在着扩展性方面的问题。例如,某些路由器的配置最多仅支持15台设备,而互联家居预计接近100台设备。另一个问题是各类数据源导致的WiFi网络竞争。

WiFi组网结构

WiFi有两种组网结构:一对多(Infrastructure模式)和点对点(Ad-hoc模式,也叫IBSS模式)。我们最常用的WiFi是一对多结构的,一个AP(接入点),多个接入设备,我们用的无线路由器是其实就是路由器+AP。WiFi还可以点对点结构,比如两个笔记本可以用WiFi直接连接起来不经过无线路由器。

WiFi的安全性

常用的WiFi加密有WEP,WPA,WPA2。WEP安全性太差基本上被淘汰了。目前WPA2是被业界认为最安全的加密方式。WPA加密是WEP加密的改进版,包含两种方式:预共享密钥(PSK)和Radius密钥。其中预共享密钥(PSK)有两种密码方式:TKIP和AES,相比TKIP,AES具有更好的安全系数。WPA2加密是WPA加密的升级版,建议优先选用WPA2-PSK AES模式。WPA/WPA2加Radius密钥是一种最安全的加密类型,不过由于此加密类型需要安装Radius服务器,一般用户不容易用到。

WiFi技术在物联网中广泛应用于电力监控、油田监测、环境监测、气象监测、水利监测、热网监测、电表监测、机房监控、车辆诱导、供水监控,带串口或485接口的PLC,RTU无线功能的扩展。

基于WiFi的物联网传输技术具有以下优势:

成本低廉:相对于有线安装、维护、故障诊断和升级配线的成本

活性高:没有电缆的约束,设备可任意架设和调整

低功耗:采用低耗能设计,可应用于电池供电的产品中

可靠性高:在有线网络中大部分的故障是由连接器引起的,而无线系统则排除了这样的可能。并可满足在艰苦工业环境所要求的持久性和可靠性。

安全性:具有多种加密方式,保证数据传输私密性。

施工周期短:WiFi组网方式,可以通过节点的自组织和自配置功能迅速搭建成有效的通信网络

蓝牙

蓝牙是一种大容量,近距离无线数字通信技术标准,设计初衷是替代RS232电缆连接计算机外设。蓝牙技术最早始于1994,由电信巨头爱立信公司研发,是在两个设备间进行无线短距离通信的最简单、最便捷的方法,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换。蓝牙还添加了AFH(Adaptive Frequency-Hopping)技术,自适应跳频,以在有WiFi信号的情况下避开WiFi的频率,提高抗干扰能力。
蓝牙通信频段主要为2.402GHz~2.480GHz。蓝牙技术被广泛地用于手机、PDA等移动设备,PC、GPS设备,以及大量的无线外围设备(蓝牙耳机、蓝牙键盘等)。

从1998年到2009年,蓝牙版本经过了1.0到3.0的版本迭代后,虽然数据传输速率上有提升,但仍牢牢定位于近距离无线数据传输平台技术,在应用中牢牢占据着蓝牙音箱和耳机,以及蓝牙鼠标和键盘等领域。

2010年蓝牙发布4.0版本BLE(Bluetooth Low Energy,即蓝牙低功耗),针对物联网的应用需求进一步简化了蓝牙技术,BLE较传统蓝牙最大的特点就是低功耗,应用于对实时性要求较高,但对数据传输速率要求比较低的场景。通过BLE,蓝牙技术的演进方向开始直接对准物联网。

2016年蓝牙发布5.0版本,蓝牙5与蓝牙4.2相比,提高的传输速率与传输距离,增强了抗空口干扰的能力,并提高了室内定位的精确度。

2019年1月,蓝牙5.1标准推出,在蓝牙5.0的基础上,新增多天线/AOA/AOD功能,增加了蓝牙的定位能力,定位的精度大幅提升,由原先的 10米级别提升至厘米级,这一定位精度可使其在室内导航、物体追踪等大有可为。

蓝牙技术的优点:“低功耗蓝牙”模式下实现了低功耗,覆盖范围增强,最大范围可超过100米;支持复杂网络:针对一对一连接最优化,并支持星形拓扑的一对多连接等;智能连接:增加设置设备间连接频率的支持,Ipv6网络支持;较高安全性:使用AES-128 CCM加密算法进行数据包加密和认证;蓝牙模块体积很小,便于集成;可以建立临时性的对等连接(Ad-hoc Connection):根据蓝牙设备在网络中的角色,可分为主设备(Master)与从设备(Slave)。

缺点是不能直接连接云端,传输速度比较慢,组网能力比较弱,而且网络节点少,不适合多点布控。

蓝牙技术的出现是信息技术不断进步的结果,现在我们处在全球物联网快速发展的节点上,设备与设备,人与设备等都有时刻保持联网的需求,蓝牙技术为万物互联提供了一种非常高性价比的解决方案。倘若蓝牙技术在物联网领域的应用一旦铺开,那么依靠其巨大的出货量(低成本)与兼容性(连接手机),凭借其在产品生态系统上的优势,在不远的未来应该有一席之地。

ZigBee

ZigBee被正式提出来是在2003年,ZigBee的出现是因为蓝牙、WiFi无法满足工业需求,它的出现弥补了蓝牙、WiFi等通信协议高复杂、功耗大、距离近、组网规模太小等缺陷。名称取自蜜蜂,蜜蜂(Bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在的方位信息,依靠这样的方式构成了群体中的通信网络。

ZigBee是短距离物联网技术,用于连接10-100米范围内的设备,不通过LPWAN直接接入网络,需要通过集中器和网关接入。通过其网状拓扑,Zigbee设备可以通过中间设备在一定距离上传输数据,基于IEEE 802.15.4标准的Zigbee已成为嵌入式应用中使用最广泛的通信协议之一,适用于家庭自动化,无线传感器网络,工业控制系统,嵌入式传感器、医疗数据收集、烟雾及闯入者警告、楼宇自动化、远程无线麦克风配置等场合。它不适合在高速率和高速移动的场合。

ZigBee可工作在三个频段868MHz~868.6MHz、902MHz~928MHz和2.4GHz~2.4835GHz,其中最后一个频段世界范围内通用,16个信道,为免付费、免申请的无线电频段。三个频段传输速率分别为20kbps、40kbps以及250kbps。

ZigBee优缺点

ZigBee是低成本、低功耗、低功率的短距离无线通信标准,是专为低速率传感器和控制网络而设计的无线网络规范,特点如下:

低功耗:由于ZigBee的传输速率低,发射功率仅为1mW,而且采用了休眠模式,因此ZigBee设备非常省电。据估算,ZigBee设备仅靠两节5号电池就可以维持长达6个月到2年左右的使用时间,其他无线设备望尘莫及。

成本低:ZigBee模块的初始成本在6美元左右,估计很快就能降到1.5~2.5美元, 并且ZigBee协议免专利费。

复杂性低:ZigBee协议的大小一般在4~32KB,而蓝牙和WiFi一般都超过100KB。

时延短:通信时延和从休眠状态激活的时延非常短,典型的搜索设备时延为30ms,休眠激活的时延是15ms, 活动设备信道接入的时延为15ms。因此ZigBee技术适用于对时延要求苛刻的无线控制(如工业控制场合等)应用。

网络容量大:一个星型结构的ZigBee网络最多可以容纳254个从设备和一个主设备, 一个区域内最多可以同时存在100个ZigBee网络, 一个网络中最多可以有65000个节点连接,网络组成灵活。

可靠:采取了碰撞避免策略,为需要固定带宽的通信业务预留了专用时隙,避开了发送数据的竞争和冲突。MAC层采用完全确认的数据传输模式, 每个发送的数据包都必须等待接收方的确认信息。如果传输过程中出现问题可以进行重发。

安全:ZigBee提供了基于循环冗余校验(CRC)的数据包完整性检查功能,支持鉴权和认证,采用AES-128的加密算法,各个应用可以灵活确定其安全属性。

此外,ZigBee也有缺点:即抗干扰性差,通信距离短,而且ZigBee协议没有开源。

设备类型和操作模式

zigbee有三种设备类型

ZC: Zigbee协调器,功能最强的设备,协调器构成网络树的根,可以连接到其他网络。每个网络中只有一个Zigbee协调器,因为它是最初启动网络的设备。它存储有关网络的信息,包括充当安全密钥的信任中心和存储库;

ZR:Zigbee路由器,除了运行应用程序功能外,路由器还可以充当中间路由器,传递来自其他设备的数据;

ZED:Zigbee终端设备,只包含与父节点(协调器或路由器)通信的足够功能;它不能从其他设备中继数据。这种关系允许节点在相当长的时间内处于休眠状态,从而延长电池寿命。ZED需要最少的内存,因此,它的制造成本比ZR或ZC要低。

当前的zigbee网络里有两种模式,带信标(beacon)的和不带信标的(non-beacon),在信标不启用的网络中,使用不带时隙的CSMA / CA信道访问机制。在这种类型的网络中,Zigbee的路由器和接收端不能休眠,导致耗电量大。

在启用信标的网络中,Zigbee路由器节点发送周期性信标,zigbee的接收节点将定时的唤醒。节点在两个信标之间时间内睡眠,从而降低其占空比并延长其电池寿命。信标间隔取决于数据速率,它们在250 kbit / s时可以从15.36毫秒到251.65824秒, 在40 kbit / s时从24毫秒到393.216秒,在20 kbit / s时从48毫秒到786.432秒。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存