作者:吴均 一博科技高速先生团队队长
承前:讨论滤波电容的位置与PDN阻抗的关系,提出“全局电容”与“局部电容”的概念。能看到当电容呈现“全局特性”的时候,电容的位置其实没有想象中那么重要。
本节:多层板设计的时候,电容倾向于呈现“全局特性”,“电源加磁珠”的设计方法,会影响电容在全局范围内起作用。同时电源种类太多,还会带来其他设计问题。
通过上一篇文章,我们知道电容在不同的使用条件,会呈现“全局特性”与“局部特性”。
避免研究公式的繁琐,我们来看看实际仿真结果。为了便于研究,设计了一个仿真案例,如图1所示:Case1是电容放在芯片管脚附近,Case1b是电容远离芯片管脚放置。这时候Case1b比Case1多出一对电源地过孔,为了同等条件下只比较电容的位置影响,我们增加Case1a案例,在和Case1b电容Fan out同样的位置上增加一对电源地过孔。
图1
图1的4、5两层为电源地耦合的平面。先来看看电源地距离为3mil时的情况:当电源地紧耦合时,a和b两个Case的PDN曲线基本重合,说明电容的谐振频率没有变化。也就是说,电容位置好像几乎没有任何影响,反而是Case1的谐振频率偏向于低频,说明Case1的安装电感反而更大一些。这个容易理解,主要是多出来的一对电源地过孔导致的。
图2
电源地距离在10mil以内时,以上结论都类似。但是当电源地距离在20mil甚至50mil时,情况稍有变化。如图3所示,电源地距离变大时,a和b两个Case的PDN曲线开始偏离,Case1b的谐振频率向低频偏移,说明电容远离芯片管脚的时候,电容的安装电感明显变大。