目前,美光拥有先进的光刻能力和间距倍增方法,可满足曝光要求,并拥有前沿的技术,以确保良好的层间堆叠。
美光的1α是如何突破物理极限的?之后的beta,gamma……将如何继续实现制程的缩进?
一些物理限制和挑战包括:实现足够大的单元存储节点电容、阵列杂散(电阻和电容)以及曝光(即确定晶圆上的电路图案)等传统挑战。我们使用的制程和设备解决方案大大缩小了电路中的图案和特征尺寸,同时仍然满足电气要求,从而使我们能够不断向前迈进。
光刻能力决定了我们如何确定曝光流程。我们使用193nm浸润式光刻机和配备最新计算光刻技术的先进光刻掩膜板,从而实现了40nm以下制程。
为进一步发展,我们使用了四重曝光,这是一系列非光刻步骤,将一个大的特征尺寸分成两个,然后再分成四个特征尺寸,每个特征尺寸是原始特征尺寸的四分之一。早在2007年,美光就率先采用双重曝光开发了闪存产品。
采用这一制程,我们可以精确地曝光出需要的细微特征尺寸,但是离一个完整的裸片还有很长的路要走,更不用说大批量生产了。我们只是刚刚勾画出一层的特征尺寸,而每个芯片有几十层。非常自豪的是,我们能够精确地控制层间的叠加。准确无误地做到这一点是让整个过程顺利进行的关键。
然后我们必须把电路图案转变成功能电路器件,比如控制读写数据的晶体管以及可以存储代表1和0的电荷的高而薄的电容。这个过程意味着必须精确地控制材料构成以及这些材料的机械和电性能,并且每次都完全相同。
我们充分发挥圆晶厂、实验室和合作伙伴的先进和创新优势,使这一切成为可能,并克服了DRAM扩展(或缩小)带来的物理挑战。我们对这个节点还采取了不同的方法,使风险承受能力更强。我们不是被动地等待数据以证明新技术可行,而是先行承担了更多的风险,然后开始确定缓解和降低风险的方法。这种基于工程知识和创新能力来博弈新方法的模式,使我们能够更积极地实现1α目标,同时为将来的节点应用这些新方法奠定了可扩展的基础。
展望未来,我们希望在后续节点(如beta和gamma)中继续这一创新,同样把重点放在制程改进上,并借鉴之前节点的经验教训。我们甚至利用从NAND团队那里学到的制程经验,他们最近推出了世界上第一款176层3D NAND,取得了业界领先的成就。此外,值得注意的是,我们的1α里程碑是通过技术开发、设计、产品和测试工程、制造和质量等各方面的协作来实现的——这是我们第一次进行如此全面的多学科协作,我们1α节点的领先优势充分证明了其可行性。我们希望通过同样的整体合作,在未来的节点上继续突破,使美光始终站在DRAM行业创新的最前沿。
*Quad patterning process flow (图片来源: Lam Research)*
1α工艺的制造过程中是否有引入新类型的设备?
我们的创新和创举无处不在:新材料,包括更好的导体、更好的绝缘体;用于沉积的新设备,修改或者有选择地去除、蚀刻这些材料。美光的领导团队非常愿意投资提升我们的节点领导优势,并提供了资源和新设备,全方位增强我们的制程能力。
我们还将我们称之为晶圆厂的制造工厂发展成人工智能驱动的高度自动化工厂,不可不谓之奇迹。美光在世界各地拥有数以万计的科学家和工程师,致力于开发大家每天使用的内存、存储和加速器技术。我们设计电路、光掩膜技术、制程技术和封装技术,涉及从硅片到系统的各个领域。此外,美光拥有世界上最先进的智能工厂,世界经济论坛将我们新加坡和台湾地区工厂加入其Global Lighthouse Network(全球灯塔工厂网络),该网络包括了在应用第四次工业革命技术方面发挥了领导作用的很多领先制造商。
美光是否有布局在DRAM的替代产品上?如果有的话,哪种产品和技术会是一种更有可能的更好的选择?
对于应用,内存和存储技术有一个典型的性能与容量三角关系。三角形的顶部是DRAM,对于要求最苛刻的易失性应用,DRAM在数据延迟和耐久性方面是最好的。三角形的底部是闪存技术(TLC、QLC),它们是块存储应用的最佳选择。随着大量资本投资于创新设计,我们认为DRAM和NAND未来十年仍然会占据这种架构的顶部和底部。
美光不断探索新兴的内存技术,但我们的研究(如下所示)表明,DRAM仍然最适合低延迟易失性应用。MRAM,例如STTRAM,具有易于与逻辑半导体制程集成的优点,然而,STTRAM的数据延迟和能耗稍高于DRAM,耐久性也差一些,并且在密度方面还存在设计实现难点。因此,业界是否采用Logic+STTRAM还有待观察。RRAM是一种有趣的低延迟块存储技术,但目前还难以确定其面密度的经济性是否能带来广泛的市场部署。
总的来说,新内存技术的研究和创新是非常激动人心的,但要赶超DRAM和NAND尚需时日。
来源:21ic