搞定电路设计之高精度、宽带宽电流测量信号链

ADI 中字

为数据处理、网络、便携式、可穿戴和其他计算应用设计并优化电源解决方案,需要对电压和电流进行精确、宽带、高动态范围的测量。这些系统可能包含一个、数十个或数百个中央处理单元(CPU)、图形处理单元 (GPU)、网络接口、存储硬件和各种支持电路。为了响应不断变化的系统需求,这些电路可能在几微秒内从消耗数微安电流的空闲状态转换到消耗数百安培电流的满载状态。

自动测试设备(ATE)测试解决方案和功率分析仪通常使用多个通道来精确捕获电流、电压或功率曲线,并在更宽带宽上测量谐波。此外,低压电源轨具有严格的噪声要求,必须在不同的负载条件、温度下进行表征,并考虑旁路电容随时间的退化。

图1所示ADI电路提供了一个完整的宽范围电流测量系统,适合这些具有挑战性的应用。精度、带宽和漂移性能与适用于生产测试环境的台式和机架安装式测试设备处于同一水平。同时,该解决方案足够小,可以集成到这些需要持续监控的应用中。当对快速瞬变和小信号电平进行数字化处理时,15MSPS的采样速率大大放宽了抗混叠滤波器要求并最大限度地提高了带宽。为了适应所执行的特定测量,可以应用额外的过采样来权衡噪声和带宽。

image.png

图1.ADI EVAL-CN0560-FMCZ简化功能框图

评估和设计支持

· 电路评估板

· CN0560参考设计板(EVAL-CN0560-FMCZ)

· SDP-H1开发平台(EVAL-SDP-H1)

· 设计和集成文件

· 原理图、布局文件、物料清单

电路描述

ADI CN0560使用分流电阻、板载放大器和μModule?的组合提供三个电流量程的高精度测量。尽管有尺寸限制,该解决方案不仅增加了每片电路板的通道数量,缓解了热挑战,减轻了自热引起的系统漂移校准负担,而且优化了整体精度性能。CN0560非常适合于自动化测试设备、电源(如CPU/GPU供电轨中)监控和分析仪中使用的测试仪器。

最常见的电流测量技术包含分流电阻、模拟前端(AFE)和模数转换器 (ADC),然后是微控制器或现场可编程门阵列(FPGA)。CN0560提供宽带宽前端,并将分流电阻上产生的小差分电压转换为较大电压来馈送,然后将其数字化。

l 电流输入

CN0560能够测量三种电流输入范围:10μA、10mA和10A。电流输入范围通过控制高电压、防闩锁、低毛刺、快速建立的多路复用器ADG5209来选择(通过A0、A1);根据板载跳线的配置方式,可以手动或通过软件进行设置。表1显示了每个电流量程的跳线配置。图2显示了10μA电流量程的简化CN0560评估设置。

施加来自电流源的10μA、10mA和10A已知电流,使用万用表通过电压检测垫测量每个分流电阻(0.05Ω、5Ω和5kΩ)上产生的差分电压。通过每个分流电阻的电流产生50mV的最大电压降。该电压由ADA4898-1 放大器(默认增益为40)放大,然后馈入ADAQ23878 μModule?的差分输入。

表1.电流量程选择

电流量程

A0

A1

10μA

1

1

10mA

0

0

10A

1

0

image.png

图2.简化评估测试设置,10μA范围

将每个分流电阻上的电压读数与μModule输出端的实际电压读数进行比较。该电路的整体精度受多个误差源影响,包括分流器、放大器和μModule的电阻温度系数(TCR),以及电流源或万用表本身的精度。然而,分流电阻的选择在决定该电路的精度方面起着主导作用。图3和图4显示了分流电阻对CN0560的影响。

image.png

图3.CN0560 FFT,无过采样(使用分流电阻)

image.png

图4.CN0560 FFT,OSR为256(使用分流电阻)

l 输入保护

36V双向瞬态电压抑制器(TVS)二极管和100Ω电阻保护分流器输入,使其免受静电放电(ESD)冲击和过压状况的影响。多路复用器输入可直接承受高达+/-15V的输入电压;高于此的电压会产生额外的电流,受100Ω电阻的限制。

l 增益级

在选定多路复用器输入之后有两个低噪声、高速放大器 ADA4898-1,以及驱动ADAQ23878信号链μModule的四通道精密匹配电阻网络LT5400。LT5400-7提供0.2ppm/°C的匹配漂移和0.01%的电阻匹配,工作温度范围很宽,CMRR优于独立匹配电阻。默认情况下,使用外部增益设置电阻将两个ADA4898-1放大器设置为增益40的全差分配置。40倍增益在ADAQ23878的输入端产生2.0V的满量程电压,当ADAQ23878配置为+/-2.048V范围时,SNR得以最大化。

l 数字化前端

图1中的一个关键模块是ADAQ23878 μModule,它包括一个低噪声、全差分放大器(FDA)、一个稳定的基准电压缓冲器、一个15MSPS 18位逐次逼近型ADC,以及实现优化性能所需的关键无源元件。

ADAQ23878 μModule是一种系统级封装(SiP)解决方案,可提供精密性能,减少终端系统元件数量,并在电路板空间约束下提高通道密度。它还缓解了与电流测量测试设备相关的校准负担和热挑战,但没有与高集成度专用集成电路(ASIC)相关的高成本。

FDA周围的精密电阻阵列采用ADI专有的iPassives?技术构建。这消除了电路不平衡,减少了寄生效应,提供高达0.005%的出色增益匹配,并实现了0.13ppm/°C的优化漂移性能。与分立无源元件相比,iPassives技术还有尺寸优势,可最大限度地减少与温度相关的误差源并减轻系统级校准负担。

FDA提供快速建立时间、宽共模输入范围以及精确的可配置增益选项(0.37、0.73、0.87、1.38和2.25),允许进行增益或衰减调节,支持全差分或单端转差分输入。

l 过采样和抗混叠

ADAQ23878的高精度性能与高采样速率相结合,可降低噪声并支持过采样,以实现极低的RMS噪声并在宽带宽内检测小幅度信号。

使用4.096V基准电压并在输入短接地的情况下进行测量,ADAQ23878的典型动态范围约为89dB,如图5所示。由于许多电流测量应用的带宽低于7.5MSPS,因此可以应用过采样来提高动态范围。

image.png

图5.无过采样的FFT(输入短路)

过采样是指以比两倍信号带宽(满足奈奎斯特标准所必需)快得多的速度进行采样。以两倍信号带宽采样时,模拟抗混叠滤波器存在严格的限制,因为任何高于image.png的噪声或干扰音都会混叠进入通带。混叠的传统解决方案是使用高阶滤波器,但这需要权衡精度、通带纹波、阻带抑制、群延迟和功耗。低采样率还将ADC的所有量化和热噪声集中在信号频带中。过采样有两方面效应:

· 模拟抗混叠滤波器可能有更高的截止频率和/或更低的阶数。

· ADC噪声分布在宽得多的带宽上,带内噪声得以降低。

image.png

图6.过采样对抗混叠滤波器要求的影响

图6说明了过采样的影响。可用信号带宽为image.png,模拟滤波器的截止频率可以提高到image.png。信号通带远低于模拟滤波器的过渡带,从而将通带纹波的影响降至最低。信号通带响应以数字低通滤波器的响应为主,该响应在整个温度范围内具有确定性和稳定性,并且对元件容差不敏感(与模拟滤波器不同)。大部分数字滤波器会将输出数据抽取到较低的速率,从而降低数据处理要求。例如,级联积分梳状(CIC)滤波器输出的抽取因子等于OSR。

过采样带来的动态范围(DR)改善幅度可以使用公式1计算。

image.png

其中:OSR为过采样数据速率。

过采样每增加4倍,分辨率就会增加1位,或者动态范围增加6dB。对ADAQ23878的输出进行256倍的过采样会产生58.594kSPS (15MSPS/256)的输出数据速率。对于不同增益选项,这对应于29.297kHz的信号带宽和接近111dB的动态范围,因此它能精确检测幅度非常小的μV信号,如图7所示。

image.png

图7.OSR为256的FFT(输入短路)

l 差分驱动ADAQ23878

选择ADA4898-1前端放大器是因为它具有宽带宽、高压摆率、低噪声或失真特性。它还能以15MSPS的全速轻松驱动ADAQ23878的低输入阻抗,并实现优化性能。

l 基准电压

ADAQ23878内置一个2.048V、20ppm/°C基准电压源(REF)和一个基准电压缓冲器(REFBUF),后者相对于REF具有2倍的固定增益。基准电压缓冲器的4.096V输出决定了ADAQ23878的满量程输入范围。

在需要较低漂移的应用中,REF或REFBUF都可以过驱。CN0560包括从板载2.048V ADR4520过驱REF的选项,其初始精度为0.025%,漂移为2ppm/°C。或者,板载LTC6655可以过驱REFBUF,其初始精度为0.025%(最大值),温度系数为2ppm/°C(最大值)。

l 电源树

EVAL-CN0560-FMCZ使用带有FPGA夹层卡(FMC)连接器的FPGA控制器板进行数据采集。板上的所有电源轨均由源自控制器板的3.3V电压轨生成。电源树是利用系统级电源架构设计工具LTpowerPlanner?设计的。

图8显示了CN0560电源树的框图。两个LTM8049双通道SEPIC或反相μModule DC/DC转换器从3.3V电源轨产生+7V、-2.5V、+15.5V 和 -15.5V电压轨。LT3023双通道、低噪声、微功耗LDO从 +7V产生+5V和+6.5V电压轨,而ADP7185超低噪声LDO从-2.5V产生-2V电压轨。

+6.5V和-2V电压轨用于ADAQ23878的集成FDA,而+5V电压轨用于LTC6655以产生4.096V基准电压。来自第二LTM8049的+15.5V和-15.5V两个电压轨被馈送到LT3032双通道LDO,为ADA4898-1和ADG5209产生+15V和-15V电压轨。低噪声LDO ADP7118为ADR4520生成+2.5V电压轨,以产生2.048V基准电压。CN0560的总功耗约为910mW,不包括分流电阻的功耗。

image.png

图8.电源简化框图

l PCB布局布线

印刷电路板(PCB)布局对于保持信号完整性和实现最佳性能至关重要。图9显示了CN0560板信号链部分的PCB布局。此电路板布局使用内置开尔文连接的四端子分流电阻,与两端子分流电阻相比,它能降低TCR效应并提供更高的温度稳定性。

必须使用带开尔文连接的四端子电流检测电阻,将流过分流电阻的高电流保持在检测路径之外。流过电阻的高电流和电压测量分别有单独的终端,这有助于最大限度地提高测量精度。

为每个校准电流都实现了最优检测布局。对于阻值非常低的电阻(5mΩ或更小),焊盘上检测点的物理位置和流过电阻的电流的对称性更为重要。例如,具有开尔文连接的四端子高精度金属箔电阻(5mΩ)用于10A电流量程。该电阻的TCR为± 0.05ppm/°C,容差为0.1%,尺寸非常小(<10mm x 10mm),因此沿焊盘的每毫米电阻都会影响有效电阻。

image.png

图9.信号链的PCB布局

建议使用多层板,ADAQ23878 μModule下方第一层中应有干净的内部接地层。电路板上的各个元件和各种信号的布线也必须小心放置。此外,输入和输出信号的布线最好对称。

μModule的接地引脚必须使用多个过孔直接焊接到PCB的接地层。此外,必须移除μModule输入和输出引脚下方的接地层和电源层,以避免出现干扰寄生电容。任何干扰寄生电容都可能影响信号链的失真和线性度性能。敏感的模拟部分和数字部分必须在PCB上分开,同时使电源电路远离模拟信号路径。快速开关信号(比如CNV±或CLK±)以及数字输出DA±和DB±不得靠近或越过模拟信号路径,以防噪声耦合到μModule。

板载LDO的输出端应添加至少2.2μF (X5R)的优质陶瓷旁路电容,以最大限度地降低电磁干扰(EMI)敏感度,并减少毛刺对电源线的影响。所有其他必需的旁路电容都包含在ADAQ23878中,从而节省电路板空间并降低成本。

常见变化

具有+2倍固定增益的ADAQ23875和具有与ADAQ23878类似增益选项的ADAQ23876是引脚兼容的16位、15MSPS、低压差分信号(LVDS)接口信号链μModule,可替代ADAQ23878。

低噪声JFET放大器ADA4627-1是ADA4898-1的引脚兼容替代产品,性能相差不大。请注意,由于带宽较低,ADA4627-1可能无法以15MSPS的全速驱动ADAQ23878。

电路评估与测试

EVAL-CN0560-FMCZ使用SDP-H1控制板支持高精度数据采集,并使用分析、控制、评估(ACE)软件采集时域和频域数据。有关测试设置的完整详细信息,请参阅EVAL-CN0560-FMCZ用户指南。

l 设备要求

· EVAL-CN0560-FMCZ

· 电流源

· EVAL-SDP-CH1Z

· 数字万用表

· 评估软件

l 开始使用

1.使用EVAL-CN0560-FMCZ板之前,请先下载ACE软件和SDP-H1驱动程序并将其安装到PC。

2.将EVAL-CN0560-FMCZ和SDP-H1板连接到 PC。

3.启动ACE软件。

4.使用适当的操作设置正确设置多个跳线选项,然后将电源和信号施加到EVAL-CN0560-FMCZ。请注意,EVAL-CN0560-FMCZ板不需要外部电源适配器,它通过160引脚FMC连接器从SDP-H1板获取电源。

5.断开EVAL-CN0560-FMCZ与SDP-H1板的连接之前,请先断开SDP-H1板的电源或拨动mini USB端口附近的复位开关。

l 测量

图10显示积分线性度(INL)数据在+/-2.5LSB以内,该数据是使用此板捕获的,运行速度为15MSPS,增益为1.38,ADAQ23878前端分别设置为10mA和10μA。

image.png

图10.10mA和10μA范围的INL数据

图11显示了三个电流量程的动态范围。用户可以在数字域中进行过采样或平均,以改善噪声性能,并针对目标带宽精确捕获小幅度信号,放宽对抗混叠滤波器的要求。

image.png

图11.动态范围与ADAQ23878增益的关系

图12所示曲线的Y轴表示计算得出的理想电压,对应的是μModule的输出电压,其中输入电流从1mA上升到10mA,增益分别为0.87和1.38。

image.png

图12.信号链输出电压与输入电流的关系

图13显示了未校准信号链的理想输出电压误差与实测输出电压误差,可以看到精度为0.01%,使用的是图10中收集的数据。增益误差主要取决于±0.1%容差的电流检测电阻。

image.png

图13. μModule输出电压误差与输入电流的关系(未校准)

更多资料

- O'Sullivan, Marcus.改进低值分流电阻的焊盘布局,优化高电流检测精度。《模拟对话》46-06,2012年6月。

- Pachchigar,Maithil。利用过采样提高SAR ADC的动态范围。Analog.com

- Mark Thoren和Sal Afzal。了解电源监控精度。Analog.com

- μModule LGA和BGA封装考虑和装配说明。Analog.com

数据手册和评估板

CN0560电路评估板、ADAQ23878数据手册、ADAQ23878评估板、ADA4898-1数据手册、ADA4898-1评估板、LT5400数据手册、LTM8049数据手册、LTM8049评估板、LT3023数据手册、LT3023评估板、LT3032数据手册、LT3032评估板、ADP7185数据手册、ADP7185评估板、ADP7118数据手册、ADP7118评估板、AD8421数据手册、AD8421评估板、ADG5209数据手册、ADG5209评估板LTC6655数据手册、LTC6655评估板、ADR4520数据手册

ESD警告

ESD(静电放电)敏感器件。带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路,但在遇到高能量ESD时,器件可能会损坏。因此,应当采取适当的ESD防范措施,以避免器件性能下降或功能丧失。

image.png

ADI的Circuits from the Lab?电路由ADI工程师设计构建。每个电路的设计和构建都严格遵循标准工程规范,电路的功能和性能都在实验室环境中以室温条件进行了测试和检验。不过,您需负责自行测试电路,并确定其是否适用。因而,ADI将不对由任何原因、连接到任何所用参考电路上的任何物品所导致的直接、间接、特殊、偶然、必然或者惩罚性的损害负责。

Circuits from the Lab电路仅供与ADI产品一起使用,并且其知识产权归ADI或其授权方所有。虽然您可以在产品设计中使用参考电路,但是并未默认授予其它许可,或是通过此参考电路的应用及使用而获得任何专利或其它知识产权。ADI确信其所提供的信息是准确可靠的。不过,Circuits from the Lab电路是以“原样”的方式提供的,并不具有任何性质的承诺,包括但不限于:明示、暗示或者法定承诺,任何适销性、非侵权或者某特定用途实用性的暗示承诺,ADI无需为参考电路的使用承担任何责任,也不对那些可能由于其使用而造成任何专利或其它第三方权利的侵权负责。ADI有权随时修改任何参考电路,恕不另行通知。

?2022-2022 ADI公司。保留所有权利。商标和注册商标是其各自所有者的财产。

###

关于ADI公司

Analog Devices, Inc. (NASDAQ: ADI)是全球领先的半导体公司,致力于在现实世界与数字世界之间架起桥梁,以实现智能边缘领域的突破性创新。ADI提供结合模拟、数字和软件技术的解决方案,推动数字化工厂、汽车和数字医疗等领域的持续发展,应对气候变化挑战,并建立人与世界万物的可靠互联。ADI公司2022财年收入超过120亿美元,全球员工2.4万余人。携手全球12.5万家客户,ADI助力创新者不断超越一切可能。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存