国内半导体产业再传好消息!近日西安邮电大学由电子工程学院管理的新型半导体器件与材料重点实验室陈海峰教授团队成功在8吋硅片上制备出了高质量的氧化镓外延片,这一成果标志着西安邮电大学在超宽禁带半导体研究上取得重要进展。
据陈海峰教授介绍,氧化镓是一种超宽禁带半导体材料,具有优异的耐高压与日盲紫外光响应特性,在功率器件和光电领域应用潜力巨大。硅上氧化镓异质外延有利于硅电路与氧化镓电路的直接集成,同时拥有成本低和散热好等优势。
氧化镓技术连续取得突破
相信很多人都了解以碳化硅、氮化镓为主的第三代半导体材料,但对氧化镓却少有所闻,氧化镓是“第四代半导体”的典型代表,凭借其高耐压、低损耗、高效率、小尺寸等特性,成功进入人们的视野。近两年来,我国在氧化镓的制备上连续取得突破性进展。
今年2月28日,中国电科46所成功制备出我国首颗6英寸氧化镓单晶,达到国际最高水平。中国电科46所氧化镓团队从大尺寸氧化镓热场设计出发,成功构建了适用于6英寸氧化镓单晶生长的热场结构,突破了6英寸氧化镓单晶生长技术,可用于6英寸氧化镓单晶衬底片的研制,将有力支撑我国氧化镓材料实用化进程和相关产业发展。
2月27日,中国科学技术大学校微电子学院龙世兵教授课题组联合中科院苏州纳米所加工平台,分别采用氧气氛围退火和氮离子注入技术,首次研制出了氧化镓垂直槽栅场效应晶体管。相关研究成果日前分别在线发表于《应用物理通信》《IEEE电子设备通信》上。
去年12月,铭镓半导体完成了4英寸氧化镓晶圆衬底技术突破,成为国内首个掌握第四代半导体氧化镓材料4英寸相单晶衬底生长技术的产业化公司。
去年5月,浙大杭州科创中心首次采用新技术路线成功制备2英寸的氧化镓晶圆,而使用这种具有完全自主知识产权技术生产的2英寸氧化镓晶圆在国际上为首次。
作为一种新型超宽禁带半导体材料,氧化镓在微电子与光电子领域均拥有广阔的应用前景,可以有效降低新能源汽车、轨道交通、可再生能源发电等领域在能源方面的消耗。为进一步推动氧化镓产业发展,科技部高新司甚至已于2017年便将其列入重点研发计划。此外,安徽、北京等省市也将氧化镓列为了重点研发对象。
氧化镓:能改变半导体行业的新技术?
众所周知,以碳化硅、氮化镓为代表的宽禁带半导体材料,正凭借耐高温、抗高压、开关速度快、效率高、节能、寿命长等特点被国内外相关企业持续关注和布局。目前,宽禁带半导体发展势头正猛,“超禁带半导体”也悄然入局。
氧化镓作为第四代半导体的代表,被视为“替代碳化硅和氮化镓”的新一代半导体材料。氧化镓是一种无机化合物,化学式为Ga2O3(三氧化二镓),是一种宽禁带半导体。氧化镓拥有超宽带隙(4.2-4.9eV)、超高临界击穿场强(8MV/cm)、超强透明导电性等优异物理性能。
作为对比,碳化硅和氮化镓的带隙为3.3eV,而硅则仅有1.1eV,远远达不到氧化镓的带隙,因此,这种新材料可以承受比SiC或GaN器件更高的工作电压,导通电阻也更低。再加上其能被广泛采用的天然衬底,不仅可以开发者可以轻易基于此开发出小型化,高效的大功率晶体管。而且可以有效降低新能源汽车、轨道交通、可再生能源发电等领域在能源方面的消耗,是制造大功率半导体主要材料,能使半导体耐受更高电压及温度,因此在智能电网、轨道交通等领域有着广阔应用前景。
此外,氧化镓薄膜对应的吸收波长为253nm,处在太阳光盲区(240-280 nm)波段中,因此是制备太阳光盲深紫外探测器的理想材料。因此,氧化镓在日盲紫外(200-300 nm波段)器件和超高功率(1-10 kW)电力电子器件方面有着无法取代的应用价值。
另一个角度看,氧化镓拥有更加易于制造的天然衬底,载流子浓度的控制以及固有的热稳定性。相关论文表示,用Si或Sn对Ga2O3进行N型掺杂时,可以实现良好的可控性。尽管某些UWBG半导体(例如AlN,c-BN和金刚石)在BFOM图表中击败了Ga2O3,但它们的广泛使用受到了严格的限制。换而言之,AlN,c-BN和金刚石仍然缺乏高质量外延生长的合适衬底。
最后,从损耗上来看,理论数据显示氧化镓的损耗是硅的1/3000、碳化硅的1/6、氮化镓的1/3,更少的损耗也就意味着能更好地节省成本。另外,氧化镓单晶可通过熔融法实现,单晶衬底成本更低,这都让产业界人士对氧化镓的未来有了很高的期待。
从制造工艺来说,氧化镓的生长分为衬底材料的生长和薄膜的生长;氧化镓单晶衬底材料的生长方法有升华法,提拉法和HVPE等;氧化镓单晶薄膜的生长技术有金属有机气相沉积法和分子束外延法,其中MOCVD法质量较高,可实现多片快速生长,适用于工业化生产,生长采用的金属有机源为三甲基镓,氧源为高纯氧气,生长温度为550-700摄氏度。