后摩尔定律时代扛旗者谁?浅谈芯片市场算力之争

镁客网 中字

“中兴被禁”事件,给国内市场的第一喝棒指向芯片制造。这是我国的短板,也是智能产业最重要的“刚需”。从2008年开始,连续十年芯片都是我国第一大宗进口商品,占据了国际需求市场的50%,2017年的进口数量为3770亿块,花费金额为2601亿美元。这些芯片被搭载在了智能手机、电视、电脑等多种硬件中,而这些产品的生产量均占全球总量的半数以上,其中电脑更高达95%。

对于传统芯片而言,接下来需要奋起直追,而另一方面,AI芯片的迅速爆发也给中国芯片产业带来了久违的起跑线骄傲。据市场研究公司Compass Intelligence发布的上半年研究报告显示,在全球前24名的AI芯片企业排名表中,英伟达(Nvidia)、英特尔(Intel)以及IBM(NPU)分别位列前三名,中国公司占据了七个席位,最高名次是排行第12的华为。

困局之中破局是唯一的出路,AI芯片可能就是那个突破口。作为计算芯片的一种,它正在对传统(计算)芯片发出挑战。

AI芯片是趋势使然

根据摩尔定律,当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。如何在相同的面积内放入更多的元器件?这对于制作工艺而言是一个极其大的挑战,而这一工艺的提升速度是缓慢且艰难的。因此,在算力、性能等方面,当前的集成电路相当于到了一个“瓶颈期”。

与此同时,AI逐步发展并落地,面对海量数据的实时采集和处理,“算力”成为了一项至关重要的必备条件。然而当前的AI算法训练、推理等,还是依赖英伟达、高通等厂商提供的传统芯片。但是,不管是高通骁龙系列,亦或是英伟达GPU等传统芯片,其当初被研发出来的目的并不是针对AI算法,这也就意味着,在AI算法加速方面,它们多是“心有力而余不足”的。目前,它们所能做的,也仅是在自己原有产品之上加注AI算法,变身为“通用AI芯片”。但究其本质,它们并没有脱离“传统芯片”行列。

举个例子,行车途中前方突然出现障碍物,如果是CPU,虽有AI优化,但本身架构致使其在算法加速方面有所限制,导致数据处理等相对较慢,从而拉长了时间线,也因此当汽车意识到前方有障碍物时,可能已经撞上了;若是采取并行计算的GPU和针对AI算法加速的AI芯片,汽车将在极短时间内提前发现障碍并作出预判,但是GPU耗能太大,用不了多久就会耗尽汽车的电池电能。相比之下,AI芯片才是最佳方案。

另外,AI芯片创企异构智能中国区副总裁谢强此前在镁客网M-TECH论坛上表示,CPU、GPU等通用处理器市场已经没有机会了,他们现在所能做的就是把各种各样的终端AI芯片做到极致,配合CPU、GPU等搭建一个小系统,这就是一个很好的解决方案。

如果说在传统芯片领域,我国“反超”的机会不大,且消耗的多项成本过高,那么“AI”芯片的大面积布局,将是此领域关乎国家战略层面的重要机遇。也由此在风起云涌间,传统芯片与AI芯片难免狭路相逢。

传统芯片不要慌,AI芯片尚有短板

相比于针对算法而研发的AI芯片,不管是算力还是功耗,包括GPU等在内的传统芯片在内的传统芯片都无法相比。

以百度“昆仑”与英伟达“Xavier”为例。百度开发者大会上,李彦宏称“昆仑”是迄今为止业内算力最高的AI芯片,能在100w以上的功耗提供260万亿次/秒的运算速度,而英伟达“Xavier”的算力大概是30万亿次/秒,功耗为30w。从性能和功耗的比值来看,以百度“昆仑”为代表的AI芯片暂时领先。

云端芯片市场,号称一霸的英伟达面临着谷歌、百度、华为等竞争对手的“虎视眈眈”。而占据手机终端芯片的高通,就AI算法加速而言,虽然它也声称自己是AI平台,但本质上还是利用AI算法对原有既定框架进行优化,不能定义为真正的AI芯片。

尽管AI芯片来势汹汹,但短板也非常明显。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存