印制线路板的CAF失效研究

PCB失效分析
关注

摘  要:阳极导电丝(CAF)是PCB业内近十年来较为热门的可靠性问题之一,当PCBA工作在高温高湿的环境下时,有可能产生沿玻璃纤维生长的阳极导电丝CAF。本文主要以某种典型板材为例,从某板材在不同孔壁间距、不同外加偏压下的CAF性能考察入手,研究CAF产生的机理,并通过模型推算板材在不同外加偏压下的平均失效寿命(MTF),为后续其他板材耐CAF性能的考察提供了理论依据和试验基础。

关键词:阳极导电丝CAF;电化学迁移;水解;平均失效时间;Bell Labs模型;可靠性;

1 前言

随着集成电路和微电子技术的飞速发展,电子产品的体积越来越小,PCB也向更轻、薄、短、小发展。层间介质层厚度更薄,布线更密,孔壁间距更小,并且在进一步微细化中。在这样的层间、布线、孔密度下,PCB的绝缘性能受到越来越多的关注。如何在这样微细的产品上,保持其在整个寿命周期内的绝缘性能,是业内所有PCB制造商所面临的问题之一。

阳极导电丝(CAF)是近十年来十分热门的绝缘劣化失效,当PCBA在高温高湿的环境下带电工作时,在两绝缘导体间有可能会产生沿着树脂和玻纤的界面生长的CAF,最终导致绝缘不良,甚至短路失效。常见的CAF失效有三种,即分别发生在孔到孔、孔到线、线到线之间的失效情况,如图1所示:

印制线路板CAF失效研究

图1  常见的CAF失效模式

其中孔到孔是最容易发生的失效,理所当然得到了更多的关注。那么在客户的耐CAF要求下,所使用的材料、制程,其耐CAF性能能否达到客户的要求,成为需要进行评估的重点内容。

2 CAF的产生机理

在高温高湿的条件下,PCB内部的树脂和玻纤会分离并形成可供铜离子迁移的通道,此时若在两个绝缘孔之间存在电势差,那么在电势较高的阳极上的铜会被氧化成为铜离子,铜离子在电场的作用下向电势较低的阴极迁移,在迁移的过程中,与板材中的杂质离子或OH-结合,生成了不溶于水的导电盐,并沉积下来,使两绝缘孔之间的电气间距急剧下降,甚至直接导通形成短路。在阳极、阴极的电化学反应如图2所示:

印制线路板CAF失效研究

图2  CAF产生时的电化学反应

从产生机理上来看,可以将CAF产生的过程分为两个过程进行研究分析,即树脂与玻纤分离的过程和电化学迁移的过程。一切CAF产生的前提,必须要使阳极产生的铜离子获得向阴极移动的路径,即树脂与玻纤产生分离。在高温高湿的影响下,树脂和玻纤之间的附着力出现劣化,并促成玻纤表面的硅烷偶联剂产生水解,从而导致了电化学迁移路径的产生。笔者针对CAF产生的两个过程:水解和电化学迁移,做了一系列试验进行验证。

3 试验设计

印制线路板CAF失效研究

4 CAF失效数据

4.1 试验板孔粗+灯芯的测量

对试验板取切片测得所有模块的孔粗+灯芯在30μm左右,那么CAF产生所需克服的电气间距应为设计孔壁间距减去0.06mm。

4.2 CAF失效观察

图4为产生CAF失效的孔壁间距为0.2mm的模块的切片截面图,可以看到,在两个绝缘孔之间产生了明显的CAF现象:

印制线路板CAF失效研究

图4  产生CAF失效的切片截面图(与玻纤平行)

4.3 不同外加偏压下的平均失效时间数据

对设计孔壁间距为0.2-0.35mm之间的材料A制作的试验板分别在500V、300V、100V、10V、3.3V下测得其平均失效时间,如图5所示:

印制线路板CAF失效研究

图5  不同外加偏压下的平均CAF失效时间

5 CAF的产生过程及平均失效时间的分析

如图5所示,有以下趋势:

1)当外加偏压一定时,随着孔壁间距的上升,其平均CAF失效时间也大幅提高;

2)当孔壁间距一定,外加偏压较大(100V以上)时,所有孔壁间距在500V、300V、100V三种外加偏压下的平均CAF失效时间差异较小,基本保持同一水平;当外加偏压较小(10V以下)时,所有孔壁间距在10V、3.3V两种外加偏压下的平均CAF失效时间差异较大。

产生2)中的趋势可能为以下原因:CAF的产生过程由水解和电化学迁移组成,我们假设在分析平均CAF失效时间时,可以将其拆分为水解时间和电化学迁移时间分别进行分析和试验验证。由于水解和电化学迁移速度受外加偏压的影响程度不同,那么在不同的外加偏压下,如果水解时间和电化学迁移时间在平均CAF失效时间中的比重发生了偏移,就有可能产生两段不同的趋势。这样的假设是否成立,必须要考察的是水解时间和电化学迁移时间的独立性,水解时间和电化学迁移时间是否互相没有影响。

5.1 水解和电化学迁移的独立性研究

(1)无外加偏压下的水解情况

图6为材料A制作的试验板中孔壁间距为0.2mm的模块在双85条件(温度85℃、湿度85%RH)无外加偏压下放置96h后的孔壁情况切片图:

印制线路板CAF失效研究

图6  未加电样品的切片截面图

如图6所示,在无外加偏压的情况下,在两孔间也产生了明显的树脂与玻纤分离的现象,证明了水解这一过程在无外加偏压的情况下也会产生。

(2)外加偏压对水解的影响

外加偏压虽然不是水解过程的必要条件,但要确定是否在一定程度上加快或延缓了水解速度,使得水解时间发生变化。因此设计以下试验验证:将材料A制作的试验板,在双85条件下静置0小时、2小时、4小时、8小时后,分别施加500V外加偏压,得到设计孔壁间距0.2、0.25、0.3mm下的失效时间,如表1:

表1  外加偏压对水解的影响

印制线路板CAF失效研究

如果外加偏压对水解速度有明显的加快或延缓,由于各个条件下的静置时间和加电时间是各不相同的,那么4种情况(分别静置0、2、4、8小时再加外加偏压)下的总失效时间应有较大偏差。但从实际数据来看,所有孔壁间距下的4种情况的总失效时间并没有太大波动。因此,可以推断外加偏压对水解时间的影响可以忽略不计,外加偏压对于水解速度没有明显的加快或延缓。

(3)水解时间的确定

1) 外加偏压500V时的电化学迁移时间

在①中,已经证明了水解这一过程在无外加偏压的情况下也会发生。假设在双85条件(温度85℃、湿度85%RH)无外加偏压下放置96h后,孔壁间距0.2mm-0.35mm的模块均已完成了水解过程,形成了铜离子迁移的通道。再对所有模块施加500V的外加偏压,即得到500V下的电化学迁移时间。试验得出,设计孔壁间距0.2mm-0.35mm的模块在外加偏压500V时的电化学迁移时间均在0.5小时以内,相对于总失效时间可以忽略不计。

2)水解时间的确定

对选用材料A制作的试验板进行CAF试验(双85条件,外加偏压500VDC),即可近似得到设计孔壁间距0.2mm-0.35mm下的水解时间,如图7:

印制线路板CAF失效研究

图7  材料A在不同孔壁间距下的水解时间

从图7可以看到,随着孔壁间距的增加,其水解时间也在上升,近似成正比关系。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存