碳化硅电控的效率对标测试
接着,基于碳化硅功率模块及其配套的门极驱动被装入了电机控制器,并匹配一永磁电机进行效率图的标定,其结果用于与基于IGBT功率模块的电控的对标。电控及驱动电机测试系统见图4。
IGBT电控与碳化硅电控的实测效率图与关键参数对比分别见图5与表2。可以看到,采用了碳化硅功率模块的电控无论是在最高效率、最低效率,还是高效区都有了显著的提升。尤其是在低扭矩的轻载情况下,碳化硅的效率优势极为明显。这主要是得益于单极性功率器件在轻载时的导通损耗低,及全区域的开关损耗低的特性。
碳化硅电控的效率仿真验证
此外,我们也将双脉冲测试的数据导入了系统评估工具ScanTool,对效率图进行了仿真计算。需要指出的是,由于碳化硅器件有较明显的正温度系数特性(即损耗随着温度升高而增加),ScanTool中设置了温度迭代功能,即根据前一次仿真结果的器件结温计算该器件在此结温下的损耗,再进行结温复算,直至前后两次计算结果的温度偏差小于1度。可以想象的是,当芯片并联数量过少的时候,由于结温升高会引起器件的损耗增加;反之,芯片并联数量较多时,单个器件的损耗较低,使其工作结温也较低,在此较低的结温下,碳化硅芯片的损耗将进一步减少。可见,具备温度-损耗的迭代功能的ScanTool是保证建模精度的一个关键。
仿真的结果显示在图6及表3。对照图5和表2的实测结果,我们可以看到,分析工具与实测结果是十分吻合的。两者之间的剩余差异主要体现在低速区,在这个区域内的电控输出功率很低,因此电控内的残余损耗显得明显,如铜排与母线电容上的损耗等。此外,脉宽调制的方案、测试设备的精度也是可能的原因,但这些较小的差异不影响接下去的系统级续航里程分析。
碳化硅电控的最大输出能力分析
碳化硅模块内部的芯片并联数量越多,其电控的输出能力越大。在这项分析中,我们假设碳化硅与IGBT允许工作在相同的最高结温下即150℃。ScanTool的仿真结果显示,当模块采用6芯片并联时,最大输出功率增加12.4%;当采用8芯片并联时,功率增加31%。
在实验中,由于动力总成台架的能力限制,我们使用了电感作为负载来测试最大输出能力。相较于采用真实电机负载,这个妥协的方案用于评估碳化硅模块测试是可以接受的,原因是碳化硅芯片双向导通的特点使得其损耗对于负载的功率因数的大小并不敏感。
图9展示了碳化硅电控输出达到了600 Arms,且已达到了测试设备的最大能力。需要指出的是,在电控应用场景中,我们保持了10kHz的开关频率,而此时碳化硅模块的开关损耗的百分比仍是较低的(约20%)。因此,通过升级软件的控制频率和驱动电路的功率能力,可以显著提升电控的开关频率而不导致明显的功率降额。在高开关频率下,负载的基波频率也可以显著提升,即将电控用于如高速空压机、航天等应用场景。
碳化硅电控带来的系统优势评估
此处的系统评估指的主要是整车层面的续航里程。为此,臻驱科技已开发了一套整车基于指定路谱的计算工具:使用者选定一款车型,并指定路况模板后,该工具将输出对应于动力总成(电机+电控)的扭矩与转速指令,并根据ScanTool计算或实际标定得出的碳化硅电控及电机的效率图,计算出整车的续航里程。
此处我们选择了一款低风阻的轿车车型,并匹配如图5所示的IGBT/SiC电控及其对应驱动电机实测效率,置于CLTC-P(China Light-duty Vehicle Test Cycle – passenger car, 中国轻型汽车行驶工况-乘用车)路谱下进行仿真分析,整车系统能耗对比见图11。较原来搭载的IGBT电控方案,搭载了臻驱碳化硅电控的整车能耗降低4.4%,即搭载相同电池容量情况下,续航里程可增加4.4%!这个令人振奋的结果,证明了碳化硅技术在新能源车主驱应用中的显著优势。用户可根据此结果,进一步进行整车经济性方面的分析。
项目总结
本文介绍了臻驱科技对于碳化硅功率模块及电控的开发、测试及系统评估。实测结果证明,该碳化硅功率模块工作稳定,并相较于IGBT模块在损耗方面有明显降低;所对应的碳化硅电控,相较于IGBT电控,无论在最大输出功率还是续航里程上都有显著的优势。此项目也侧面证明了,碳化硅技术应用于新能源车的主驱是大势所趋。
本文所开发的碳化硅功率模块与某主流IGBT功率模块在功率端子部分兼容,而门极位置经过了优化改动,其目的是优化模块内部的电气性能。本文所开发的碳化硅电控与IGBT电控的功能完全兼容而性能优势明显,并可在臻驱科技现有的电控自动化产线上实现批量生产。
臻驱科技自主研发了一套自动化产线(见图12),其规划产能为每年15万台,组装线自动化率约85%,测试线自动化率为100%。工厂通过了TUEV(德国技术监督协会的)的IATF16949质量体系认证。
临近尾声,作者对碳化硅电控的心得讨论如下:
1.碳化硅用于电控的主要优势在于效率,而更高效率带来的经济优势在于电池安装成本及充电成本的降低;
2.碳化硅模块设计时,其芯片并联数量需要一定过设计以实现最佳经济性;更多的芯片并联会降低经济性,但可帮助整车实现更大的加速度;
3.碳化硅模块本体设计难点在于电磁部分,需要开发出精确的建模和设计辅助工具;
4.碳化硅技术用于小风阻车型时续航里程可增加4%以上。
总体而言,碳化硅电控适用于续航里程长、风阻小的高端车型,并对整车使用频次较高的用户有更高经济价值。