2、subplot2grid分格显示
这种方式和上一种实现的效果一样,只不过更加容易理解罢了,先来看一个案例代码:
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
#method1: subplot2grid
###########################
plt.figure(figsize=(12, 10), dpi=80)
ax1=plt.subplot2grid((3,3),(0,0),colspan=3,rowspan=1)#相当于格子分成3行3列,列跨度为3,行跨度为1
ax1.plot([1,2],[1,2]) #轴的范围,x轴,y轴。
ax1.set_title('ax1_title')
ax2=plt.subplot2grid((3,3),(1,0),colspan=2,rowspan=1)
ax2.plot([2,4,6],[7,9,15])
ax3=plt.subplot2grid((3,3),(1,2),colspan=1,rowspan=1)
x = np.arange(4)
y = np.array([15,20,18,25])
ax3.bar(x,y)
ax4=plt.subplot2grid((3,3),(2,0),colspan=1,rowspan=1)
ax5=plt.subplot2grid((3,3),(2,1),colspan=2,rowspan=1)
效果如下:
结合图可能更好理解一点,其中代码:
plt.subplot2grid((3,3),(0,0),colspan=3,rowspan=1)
第一个参数(3,3)相当于格子分成3行3列,第二个参数(0,0)表示该子图的开始位置,colspan=3表示子图的列跨度为3,rowspan=1表示子图的行跨度为1。
好了,以上就是Matplotlib绘制多图的内容,是不是很简单呢!喜欢的小伙伴可以收藏一下,万一哪天就用得上了呢。